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Abstract. We show that given ω many supercompact cardinals and a
weakly compact above them, there is a generic extension in which the
tree property holds at the first and second successor of a strong limit
singular cardinal.

1. Introduction

The tree property at κ states that every tree of height κ with levels of
size less than κ has an unbounded branch; or, equivalently, there are no κ-
Aronszajn trees. A long term project in set theory is to get the consistency
of the tree property on larger and larger intervals of regular cardinals. One of
the earliest positive results was in 1972 by Mitchell [6] that the tree property
can hold at ℵ2. Building on that, in 1983 Abraham [1] showed that the tree
property can simultaneously hold at ℵ2 and ℵ3. Later, in 1998, Cummings
and Foreman [2] constructed a sophisticated iteration of Abraham’s forcing,
obtaining the tree property at ℵn for each n > 1. For a long time after
that it remained open whether ℵω+1 can also be included. Then recently,
Neeman [8] showed that it is indeed consistent to have the tree property at
each ℵn for n > 1 and at ℵω+1.

The next major open question is to get the tree property for both ℵω+1 and
ℵω+2 for ℵω strong limit1. This would require violating the Singular Cardinal
Hypothesis (SCH) at ℵω. In the 1980’s Woodin asked if it is consistent to
have the failure of the SCH at ℵω with the tree property at ℵω+1. While
this is still open, in the last several years there have been some important
progress. Gitik-Sharon [3] showed the consistency of the failure of SCH at a
singular cardinal κ together with the non-existence of special κ+-Aronszajn
trees. They also pushed down their result to κ = ℵω2 . Then in 2009,
Neeman [7] obtained the failure of the singular cardinal hypothesis at a
singular cardinal κ, together with the full tree property at κ+. This was
pushed down to κ being ℵω2 by the author in [9].

This material is based upon work supported by the National Science Foundation under
Grant No. DMS- 1362485 and Career 1454945.

1If one drops the requirement for ℵω to be strong limit, the tree property at ℵω+1 and
ℵω+2 was obtained by Fontanella and Friedman in [4]. Independently, in [11] Unger shows
the tree property for regulars below ℵω·2, again in the case of not strong limit singulars.
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Regarding the tree property at the double successor of a singular, the
first important result was by Cummings and Foreman [2] in the late 90’s.
Starting from a supercompact κ and a weakly compact above it, they pro-
duced a generic extension in which cf(κ) = ω and the tree property holds
at κ++. Their construction incorporates Prikry forcing within the Mitchell
poset. Then Unger showed that it is consistent to have the tree property at
κ++ together with no special Aronszajn trees at κ+ for a singular κ, [10].
His construction uses the diagonal supercompact Prikry from [3] within the
Mitchell poset. He also showed that one can also use Neeman’s version of
the diagonal supercompact Prikry forcing from [7]. In this paper we show
that by combining Neeman’s diagonal Prikry with the Mitchell poset we can
actually obtain the full tree property at κ+ and κ++.

Theorem 1.1. Suppose that 〈κn | n < ω〉 is an increasing sequence of super-
compact cardinals and that λ is a weakly compact cardinal with λ > supn κn.
Then there is a generic extension in which κ0 is strong limit singular with
cf(κ0) = ω, λ = κ++

0 , and the tree property holds at both κ+0 and κ++
0 .

In section 2, we describe all the relevant forcing notions. In section 3 we
show the key branch lemma, and then use it to show the tree property at the
first successor of the singular in the main model, completing the argument.

2. The forcing notions

Suppose in V , 〈κn | n < ω〉 is an increasing sequence of indestructible su-
percompact cardinals. Let κω = supn κn, κ = κ0, and µ = κ+ω . Suppose that
λ is a weakly compact cardinal above µ. Let A = Add(κ, λ). In V A, κ re-
mains supercompact, so in that model for n < ω let Un be a normal measure
on Pκ(κn), such that the Un’s project to each other. Then let I denote Nee-
man’s supercompact Prikry from [7], with respect to these measures. More
precisely, conditions are of the form p = 〈x0, ..., xn−1, An, An+1, ...〉, where
each xi ∈ Pκ(κi), each Aj ∈ Uj , and for i < l < n, xi ⊂ xl and |xi| < κ∩ xl.
We say that the length of p is n, and the stem of p is 〈x0, ..., xn−1〉. For
more on the properties of I, see [3] or [7]. Let us just note that conditions
with the same stem are compatible.

Let P = A∗ İ. For α < λ, let Pα denote the restriction of P to α. As shown
in Cummings-Foreman [2], Section 5 (and in Section 3 of [10]), there is a set
B ⊂ λ of Mahlo cardinals in the weakly compact filter, for which this makes
sense. More precisely, for every α ∈ B, the restriction of the measures Un
for n < ω to V A�α gives normal measures. Let Iα be the diagonal Prikry
forcing obtained from these measures, then Pα is A � α ∗ İα. Then a generic
object for P induces a generic object for Pα. Below we will restrict ourself
to these α’s.

Definition 2.1. Conditions in R are of the form 〈f, ṗ, r〉, where:

(1) 〈f, ṗ〉 ∈ A ∗ İ,
(2) r is a partial function with dom(r) ⊂ B, |dom(r)| < µ,
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(3) for each α ∈ dom(r), r(α) is a Pα name for a condition in Add(µ, 1)V
Pα

.

Note that for α ∈ dom(r), 〈f, ṗ〉 � α ∈ Pα. Next we define the ordering.
〈f1, ṗ1, r1〉 ≤ 〈f2, ṗ2, r2〉 iff:

(1) 〈f1, ṗ1〉 ≤P 〈f2, ṗ2〉, and
(2) dom(r1) ⊃ dom(r2) and for every α ∈ dom(r2),

〈f1, ṗ1〉 � α 
Pα r1(α) ≤ r2(α).

In the second item of the definition of the order 〈f, ṗ〉 � α denotes πα(〈f, p〉),
where πα is a projection from P to R.O.(Pα). Also, given 〈f, ṗ, r〉 ∈ R, we
will refer to ṗ as the Prikry part of the condition.

Now define Q to consist of conditions of the form 〈0, 0, r〉 ∈ R with the
induced ordering. Then Q is µ-directed closed in V . Set R∗ = P × Q. By
the directed closure of Q and the indestructibility of the κn’s, in V Q we
have that A ∗ İ is the forcing construction in Neeman [7] for the appropriate
measures; for more details see [10], Section 6. Then, by [7], it follows that
the tree property at µ holds in the extension by R∗. Also, as in [2],

〈〈f, ṗ〉, 〈0, 0, r〉〉 7→ 〈f, ṗ, r〉
is a projection from R∗ to R. For simplicity of notation we will write Q =
{r | 〈0, 0, r〉 ∈ R} and denote conditions in R∗ in the form 〈f, ṗ, r〉 and use

R∗ , ≤R∗ to avoid ambiguity.

From [2] and [10] we have that after forcing with R, κ is a strong limit
singular cardinal with cf(κ) = ω, µ = κ+, 2κ = λ = κ++, and the tree
property holds at κ++. It remains to show that in V R the tree property
holds at µ.

Definition 2.2. Let ṗ be a name for a condition in İ. Conditions in Rṗ are
of the form 〈a, q̇, r〉 ∈ R, where 〈a1, ṗ1, r1〉 ≤Rṗ 〈a2, ṗ2, r2〉 iff:

(1) 〈a1, ṗ1〉 ≤P 〈a2, ṗ2〉, and
(2) dom(r1) ⊃ dom(r2) and for every α ∈ dom(r2),

〈a1, ṗ〉 � α 
Pα r1(α) ≤ r2(α).

We will show that R∗ projects to Rṗ and that Rṗ projects to R below any
condition with Prikry part forced to extend ṗ.

Lemma 2.3. R∗ projects to Rṗ, as witnessed by the identity.

Proof. Clearly the identity is order preserving.
Now suppose that 〈a′, q̇′, r′〉 ≤Rṗ 〈a, q̇, r〉. Define r′′, so that dom(r′′) =

dom(r′), and for every α ∈ dom(r′′), r′′(α) = {〈σ, b〉 s.t.

• b ≤ 〈a′, ṗ〉 � α and b 
Pα σ ∈ r′(α) or
• b ⊥ 〈a′, ṗ〉 � α and b 
Pα σ ∈ r(α)}.

Then 〈a′, q̇′, r′′〉 ≤R∗ 〈a, q̇, r〉 and 〈a′, q̇′, r′′〉 ≤Rp 〈a′, q̇′, r′〉.
�

Lemma 2.4. Let s∗ = 〈1, ṗ, 1〉 ∈ R. Then Rṗ/s∗ := {s ∈ R | s ≤ s∗}
projects to R/s∗ := {s ∈ R | s ≤ s∗} as witnessed by the identity.
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Proof. For the proof, assume that all conditions are below s∗. Note that
since the last coordinate is the empty condition, then s ≤Rṗ s

∗ iff s ≤R s
∗.

As before, it is straightforward to see that the identity is order preserving.
Suppose that 〈a′, q̇′, r′〉 ≤R 〈a, q̇, r〉. Define r′′, so that dom(r′′) = dom(r′),

and for every α ∈ dom(r′′), r′′(α) = {〈σ, b〉 s.t.

• b ≤ 〈a′, q̇′〉 � α and b 
Pα σ ∈ r′(α) or
• b ⊥ 〈a′, q̇′〉 � α and b 
Pα σ ∈ r(α)}.

Then 〈a′, q̇′, r′′〉 ≤Rṗ 〈a, q̇, r〉 and 〈a′, q̇′, r′′〉 ≤R 〈a′, q̇′, r′〉.
�

Now let A be A-generic; we will define a poset Qp in V [A], such that Rṗ
is isomorphic to A ∗ (İ× Q̇p).

Definition 2.5. Work in V [A]. Let p = ṗA. Define Qp to consist of
conditions of the form r ∈ Q, with the following ordering: r1 ≤Qp r2 iff
dom(r1) ⊃ dom(r2) and there is a ∈ A, such that for every α ∈ dom(r2),
〈a, ṗ〉 � α 
Pα r1(α) ≤ r2(α).

Proposition 2.6. Qp is κ-closed.

Lemma 2.7. Rṗ is isomorphic to A∗(İ×Q̇p) (i.e. a generic for one induces
a generic for the other and vice versa).

Proof. Work in V [A], where A is a generic for A. For an A-name q̇ for a

condition in İ, we write q to denote q̇A. Let π : Rṗ/A → I×Qp be given by
π(〈a, q̇, r〉) = 〈q, r〉.

To show that it is order preserving, suppose that 〈a′, q̇′, r′〉 ≤Rṗ/A 〈a, q̇, r〉.
Then q′ ≤I q, and for every α ∈ dom(r) ⊂ dom(r′), we have that 〈a′, ṗ〉 �
α 
Pα r

′(α) ≤ r(α). Since a′ ∈ A, that means r′ ≤Qp r.
On the other hand, if 〈q′, r′〉 ≤I×Qp 〈q, r〉 = π(〈a, q̇, r〉), let a′ ∈ A witness

that r′ ≤Qp r. By extending a′ if necessary, also assume that a′ ≤ a and
a′ 
 q̇′ ≤ q̇. Then 〈a′, q̇′, r′〉 ≤Rṗ/A 〈a, q̇, r〉.

Since we are working over A, that means that s ⊥ s′ iff π(s) ⊥ π(s′). And
so since it is onto, π is a dense embedding. �

Let G be R-generic and let A be A-generic induced by G. As before, when
working in V [A] and referring to conditions 〈f, ṗ, r〉, we will write p for ṗA.
Also, let I be the I-generic over V [A] induced by G.

Let G∗ be R∗/G-generic. For every q ∈ I, let Gq be Rq̇/G generic induced
by G∗. Also, let Q be Q-generic induced by G∗ and for p ∈ I, let Qp be the
Qp-generic over V [A] induced by G∗.

Remark 2.8. If q ≤ p, then V [Gq] ⊂ V [Gp] and Gp ⊂ Gq. This follows by a
similar argument as in Lemma 2.3.

Remark 2.9. If q ≤ p, then Qp projects to Qq and Qp ⊂ Qq.

Let T be a µ - tree in V [G]. For α < µ, we may assume that the α-th
level of T is Tα = {α} × κ. Applying Neeman’s arguments from [7], there
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is an unbounded branch b through T in V [G∗]. More precisely, in [7] the
following is shown:

(†) In V [A × Q], there are an unbounded set J ⊂ µ, a stem h∗, and
〈uα, pα | α ∈ J〉, where each pα ∈ I is a condition with stem h∗, and each
uα is a node on the tree of level α, and:

(1) for all α < β from J , pα ∧ pβ 
I uα <Ṫ uβ;
(2) {α | pα ∈ I} is unbounded in µ (due to the chain condition of I);

Then, the branch b in V [G∗] is the downward closure of {uα | pα ∈ I}. In

particular, each pα 
I uα ∈ ḃ. Here and below, for two conditions q1, q2 in
I with the same stem, q1 ∧ q2 denotes the weakest common extension in I
(which also has that stem). By thinning out J , one can arrange that for
some fixed ξ < κ, uα = 〈α, ξ〉. In the next section, we will use a branch
lemma to show that this branch must already be in V [G].

Remark 2.10. One can show that the branch b is actually in V [Gp] for every
p ∈ I. The argument requires a similar, somewhat simpler branch lemma,
as the one presented in the next section.

3. A branch in V [G]

In this section, we show that for densely many stems h, there is some α,
such that above α, for every p with stem h, there is no more splitting in
R∗/Gp in deciding nodes of the branch. Our branch lemma is motivated
by the splitting arguments in Magidor-Shelah [5], except that here we con-
sider multiple models at the same time. Throughout, we maintain that the
Prikry stem is constant and use the full power of [7]. Then we will take the
supremum over all stems and use that the generic objects 〈Gp | p ∈ I〉 in a
sense approximate G. More precisely, we will show that G =

⋃
p∈I Gp.

3.1. On names. Let τ ∈ V [A] be an R/A-name for the tree, forced to be

such by the empty condition. Now let Ṫ ∈ V [A][Q] be an I-name for the
tree, obtained from τ . I.e. for any two nodes u, v, and q ∈ I, q 
I u <Ṫ v iff
there is a ∈ A and r ∈ Q, such that 〈a, q̇, r〉 
R/A u <τ v.

Similarly, for every p ∈ I, let Ṫp ∈ V [A][Qp], be an I-name for the tree,

obtained from τ . I.e. for any two nodes u, v, and q ≤ p, q 
V [A][Qp]
I u <Ṫp v

iff there is a ∈ A and r ∈ Qp, such that 〈a, q̇, r〉 
R/A u <τ v.

Note that the only formal difference is that τ , Ṫ and each Ṫp are defined in
different ground models. But their evaluations by generic filters, projecting
to one another in the right way, will be the same. In particular, we have the
following.

Remark 3.1. If q ≤ p are in I, then q 
V [A][Q]
I u <Ṫ v iff q 
V [A][Qp]

I u <Ṫp v.

Let ḃ ∈ V [A] be a R∗/A-name for the branch as in [7]. For simplicity,
assume

1 
V [A]
I×Q “ḃ is a cofinal branch through τ.”
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Then we also have that for every p ∈ I:
• V [A][Qp] |= 〈p, 1〉 
I×(Q/Qp) ḃ is a cofinal branch through Ṫp”,

• over V [A][Q], p 
I “ḃ is a cofinal branch through Ṫ”.

In the last item, we interpret ḃ as a I-name in V [A][Q] by taking {〈σ, q〉 |
(∃r ∈ Q)(〈σ, 〈q, r〉〉 ∈ ḃ)}.

3.2. Splitting.

Definition 3.2. Let h be a stem. We say that there is an h-splitting at
a node u, if there is a p ∈ I with stem(p) = h and r ∈ Q, such that

〈p, r〉 
V [A]
I×Q u ∈ ḃ, and nodes u1, u2 of higher levels and conditions r1, r2,

such that for k ∈ {1, 2},
• rk ≤Q r, rk ∈ Qp,
• 〈p, rk〉 


V [A]
I×Q uk ∈ ḃ, and

• p 
V [A][Q]
I u1 ⊥Ṫ u2.

Note that by Remark 3.1, I-forcing is the same over V [A][Q] or V [A][Qp]
for appropriate p. With this in mind, below we will often just write 
I.

Definition 3.3. For a stem h, we say that †h holds, if in V [A][Q] there are
unbounded J ⊂ µ, ξ < κ, and 〈pα | α ∈ J〉, where each pα ∈ I is a condition
with stem h, and setting uα = 〈α, ξ〉, we have:

(1) for all α < β from J , pα ∧ pβ 
I uα <Ṫ uβ;

(2) for all α ∈ J , pα 
I uα ∈ ḃ.

By density and the argument in [7], any stem can be extended to a stem
for which the above holds.

In V [A][Q], for each h, such that †h holds, let Eh be the set of nodes u
forced to be in the branch by a condition of the form 〈p, r〉 ∈ I × Q with
stem(p) = h. Note that Eh ∩ Tγ 6= ∅ for unboundedly many γ < µ. Set
αh := sup{γ < µ | (∃u ∈ Tγ ∩ Eh)( there is an h− splitting at u)}.

Proposition 3.4. Let h be a stem, such that †h holds; then αh < µ.

Proof. Suppose otherwise. Let r̄ ∈ Q force that α̇h = µ and that J̇ , ξ and
〈ṗα | α ∈ J̇〉 witness (†)h, where these are Q-names in V [A].

Lemma 3.5. (Splitting) Let r ≤Q r̄ be such that r ∈ Qq for some q with
stem h. Then there are nodes 〈vi | i < κω〉 and conditions 〈〈pi, ri〉 | i < κω〉
in I×Q, such that:

• for every i, stem(pi) = h, pi ≤ q, ri ≤Q r, ri ∈ Qpi.
• for every i, 〈pi, ri〉 
I×Q vi ∈ ḃ and
• for every i < j, pi ∧ pj 
I vi ⊥Ṫ vj.

Proof. Let Q′ be Q/Qq-generic over V [A][Qq], such that r ∈ Q′. Work for
now in V [A][Q′] with Eh, J , 〈pα | α ∈ J〉 denoting the interpretations of the
respective names in V [A][Q′].
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Claim 3.6. For every u ∈ Eh, there is p ∈ I with stem h, p ≤ q, and r1, r2 ∈
Qp and nodes v1, v2 of higher levels, such that for k ∈ {1, 2}, 〈p, rk〉 
I×Q
vk ∈ ḃ and p 
I “v1 ⊥Ṫ v2, u <Ṫ v1, u <Ṫ v2”.

Proof. Let u ∈ Eh. Then there is 〈p, t〉 ∈ I × Q′ with stem(p) = h, forcing
that u is in the branch. By our assumptions that αh = µ, there must be a
node v ∈ Eh with level higher than u, such that there is h-splitting at v.
Namely there is 〈p′, t′〉 ∈ I × Q′ with stem(p′) = h, forcing that v is in the
branch, and r1, r2 ∈ Qp′ , and nodes v1, v2 of higher levels, such that:

• for k ∈ {1, 2}, rk ≤Q t
′,

• for k ∈ {1, 2}, 〈p′, rk〉 
I×Q vk ∈ ḃ, and
• p′ 
I “v1 ⊥Ṫ v2, v <Ṫ v1, v <Ṫ v2”.

We may assume that p′ ≤ q by Remark 2.9, and that p′ ≤ p since the stem
is the same. Since both t, t′ ∈ Q′, we have that in V [A][Q′], p′ 
I u <T v.
Note that by our earlier remark, this is also forced over V [A][Qp′ ], and so it
is also forced over V [A][Q].

Then p′, v1, v2 are as desired. �

Strengthen r if necessary to force the conclusion of the above claim. Then
in V [A][Qq] there is a club C ⊂ µ, such that for every β ∈ C, for all γ < β,

for every node u ∈ Tγ , if u is forced by a condition below r to be in Ėh,
then there are γ < γ1 ≤ γ2 < β, and nodes at levels γ1 and γ2 as in the
conclusion of the claim applied to u.

Going over to V [A][Q′] again, we build a sequence 〈pi, γi, βi | i < κω〉,
such that each γi ∈ J , pi = pγi (and so it is a condition in I with stem h),
βi ∈ C, and γi < βi ≤ γi+1. For every i < κω, denote ui = 〈γi, ξ〉. Also let

si ∈ Q′, si ≤Q r, be such that si 

V [A]
Q “γi ∈ J̇ and pi = ṗγi”.

Since Q is µ-closed in V and A has the κ+-chain condition, by Easton’s
lemma, 〈γi, βi, pi, si | i < κω〉 is actually in V [A]. Then:

• if i < j, then pi ∧ pj 
I ui <Ṫ uj .

• for every i, 〈pi, si〉 
I×Q ui ∈ ḃ, and so si 
Q ui ∈ Ėh.

For the rest of the proof, work in V [A][Qq]. For every i < κω, using that
γi < βi ≤ γi+1 and βi ∈ C, let qi ∈ I with stem h, qi ≤ q, and vi1, v

i
2 be

nodes such that there are ri1, r
i
2 ∈ Qqi , such that:

(1) qi forces that ui <Ṫ v
i
1, ui <Ṫ v

i
2, and vi1 ⊥Ṫ v

i
2;

(2) 〈qi, ri1〉 
I×Q v
i
1 ∈ ḃ;

(3) 〈qi, ri2〉 
I×Q v
i
2 ∈ ḃ;

(4) level(vi1), level(v
i
2) < γi+1.

We also arrange that each qi ≤ pi, using the fact that they have the same
stem.

By the Prikry property, let pi ≤∗ qi ∧ pi+1 be such that pi decides “vi1 <Ṫ
ui+1” and “vi2 <Ṫ ui+1”. At least one of them is decided negatively, say this

is true for vi1. Let ri = ri1 and vi = vi1. Then if i < j < κω, the level of vi is
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less that the level of ui+1, and

pi ∧ pj 
I vi 6<Ṫ ui+1 ≤Ṫ uj <Ṫ vj .

Also, each ri ∈ Qqi ⊂ Qpi . It follows that 〈pi, vi, ri | i < κω〉 are as
desired. �

Now, working in V [A][Q] construct 〈〈pσ, rσ〉 | σ ∈ κ<ωω 〉, of conditions in
I×Q and nodes 〈uσ | σ ∈ κ<ωω 〉 such that:

(1) for each σ, stem(pσ) = h, rσ ∈ Qpσ , rσ ≤Q r̄.
(2) if σ2 ⊃ σ1, then 〈pσ2 , rσ2〉 ≤I×Q 〈pσ1 , rσ1〉,
(3) for every σ ∈ κ<ωω ,

〈pσ, rσ〉 
V [A]
I×Q uσ ∈ ḃ,

(4) for every σ and i < j < κω, over V [A][Q],

pσ_i ∧ pσ_j 
I uσ_i ⊥Ṫ uσ_j .

We do this by induction on the length of σ, using the splitting lemma.
Let α = supσ∈κ<ωω level(uσ); then α < µ. For every f ∈ κωω, let pf ∈ I

with stem h be the weakest common extension of pf�n for all n. Then let
rf ∈ Qpf be such that 〈pf , rf 〉 ≤I×Q 〈pf�n, rf�n〉 for all n. Here we use
the fact that since every rf�n ∈ Qpf�n , then it is also in Qpf . Then let

〈p′f , r′f 〉 ≤I×Q 〈pf , rf 〉 be such that for some ξf < κ, 〈p′f , r′f 〉 
I×Q 〈α, ξf 〉 ∈ ḃ
and r′f ∈ Qpf . We can obtain the latter by a density argument, since Q
projects to Qpf .

Let f, g ∈ κωω be distinct, such that ξ = ξf = ξg and stem(p′f ) =

stem(p′g) = h′. Let n be such that f � n = g � n = σ, but i = f(n) 6=
g(n) = j.

Let p = p′f ∧ p′g. Then r′f , r
′
g ∈ Qp (since Qpf ⊂ Qp and Qpg ⊂ Qp).

Let I ′ be I-generic over V ′ = V [A][Qp] with p ∈ I ′. Note that A∗I ′×Qp
induces a generic for R/A ∗ I ′. Then, in V ′[I ′], interpreting ḃ as a Q/Qp-
name in the natural way and setting T = (Ṫp)I′ , we have:

• r′f 
Q/Qp 〈α, ξ〉 ∈ ḃ, r′f 
Q/Qp uσ_i ∈ ḃ;
• r′g 
Q/Qp 〈α, ξ〉 ∈ ḃ, r′g 
Q/Qp uσ_j ∈ ḃ;
• uσ_i ⊥T uσ_j .

But both level(uσ_i) < α and level(uσ_j) < α, contradiction.
�

Remark 3.7. We could have done the proof by working in V [A][Qh_1] in-
stead, where h_1 is the weakest element in I with stem h. Note that for
every q with stem h, V [A][Qq] ⊂ V [A][Qh_1]. When doing the splitting, we
just have to rely on Easton’s lemma to get 〈γi, βi, pi | i < κω〉 in V [A], and
so in V [A][Qh_1].
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3.3. Defining the branch. Let α := sup{αh | †h holds} < µ, and let

u ∈ Tα and s∗ ∈ G∗ be such that s∗ 
R∗/A u ∈ ḃ. Then in V [G], set

d = {v | u <T v, (∃s ∈ G)s ≤R∗ s
∗, s 
R∗/A v ∈ ḃ}.

To prove that this is a branch we use that there is no more splitting after α
and the following lemma:

Lemma 3.8. If s ∈ R∗/G, then there is p ∈ I, such that s ∈ Gp.

Proof. In V [G], define D = {s′ ∈ R∗/G | (∃p ∈ I)s′ ≤Rṗ s}. We claim that
D is dense in R∗/G.

Suppose s′ ∈ R∗/G. Denote s = 〈a, q̇, r〉, s′ = 〈a′, q̇′, r′〉. Since both are in
G, they have a common extension s′′ = 〈b, ṗ, r”〉 in G. Then s′′ ≤Rp/G s and

s′′ ≤Rp/G s
′. Finally, by the same argument as in Lemma 2.3, let s∗ ∈ R∗/G

be such that s∗ ≤R∗/G s
′ and s∗ ≤Rṗ s

′′ . Then s∗ ∈ D and is below s′.
Then let s∗ ∈ D ∩G∗, and let p ∈ I witness that s∗ ∈ D. Then s∗ ∈ Gp

(since G∗ induces Gp), and so s ∈ Gp by upwards closure.
�

Corollary 3.9. d induces a branch through T in V [G].

Proof. Clearly {γ < µ | (∃v ∈ Tγ)v ∈ d} is unbounded in µ, and actually it
is a tail end of µ. Next we have to show that for every γ ≥ α, |d ∩ Tγ | = 1.

Suppose for contradiction there are distinct v1, v2 ∈ d∩Tγ for some γ ≥ α.
Let s1, s2 ≤R∗ s

∗, s1, s2 ∈ G witness that v1, v2 ∈ d. Denote s1 = 〈a1, p1, r1〉
and s1 = 〈a2, p2, r2〉. Note that since the nodes are on the same level,
p1 ∧ p2 
I v1 ⊥Ṫ v2.

By Lemma 3.8, there is some q ∈ I, such that both s1, s2 ∈ Gq. By
extending q if necessary, we may assume that q ≤ p1, q ≤ p2, and h :=
stem(q) is such that †h holds. Note that since q ∈ I, extending the Prikry
part of s∗, we have that u ∈ Eh. Now let s′1 = 〈a1, q, r1〉 and s′1 = 〈a2, q, r2〉.
Then s′1 ≤R∗/G s1 and s′1 ≤R∗/G s1 and s′1, s

′
2 are still in Gq. It follows that

q, s′1 and s′2 witness an h-splitting at u, but α > αh, contradiction. �

The following remains open:

Question 1. Can the result of Theorem 1.1 be obtained at κ0 = ℵω, or even
κ0 = ℵω2?
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